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Abstract-Optimally designed truss type structures whose joints do not transmit moments often
have a large number of coincident buckling modes. Each mode corresponds to the buckling of an
individual member. Due to the interaction between various simultaneous modes. such trusses
can be sensitive to imperfections. This problem is analysed using the Lyapunov-Schmidt-Koiter
decomposition and asymptotic e:l:pansion technique. The shape of the imperfection that maltimizes
the load drop is determined from the postbifurcated equilibrium branch of the perfect structure on
which the load drops most rapidly. It is shown that this branch is obtained by minimizing a
homogeneous quadratic form subject to linear inequality constraints. The general theory is illus­
trated by several e:l:amples involving two- and three-dimensional trusses.

I. INTRODUCTION

Lattice type slructures arc not only wmmon for applications on the ground such as lattice
roofs. radio antennae. crane booms. dishes of radio telescopes and lattice domes; but are
also being envisioned for applications in space. including lattice columns, communications
platforms. radio-astronomy dishes. solar pands. rellectors and other structures. With the
advent and increasing availability of higher strength materials, buckling often becomes a
critical design consideration. This is especially true for applications in space, due to the
combination of large structural dimensions. small loads and the importance of weight
minimization (allhough the limitation of dellections is also an essential consideration in
this case).

Often such strlll.:tures arc optimized so that, as the applied load is increased. a number
of members reach their buckling load at the same time. Buckling ofany member corresponds
llJ an eigenmode for the system as a whole. Thus. an optimized structure can have a large
number of coincident eigenmodes.

Il has long been established (Koiter, 1945) that multiple coincident eigenmodes can
lead to high imperli:ction sensitivity of the structure's load carrying capacity. For example,
the load carrying capacity of a cylinder in axial compression can drop by a factor of five
or mon.: due to imperfections. Lattice structures can also be sensitive to imperfections
(Wright, 1965. 1966a; Castano, 1989; Britvec, 1973; Britvec and Davister, 1985): a lattice
dome in Bucharest failed at an estimated load of .tbout 40% of the theoretical buckling
load for a perli:ct dome (Wright, 1965. 1966a). The high imperfection sensitivity of lattice
domes was further confirmed by experimental results reported in Wright (1966b). Lattice
columns are also wry imperfection sensitive when the overall column buckling and member
buckling occur at approximately the same level of applied load (Thompson and Hunt,
1973; Crawford and Benton, 1980; Elyada. (985). (n this paper a general methodology for
determining the imperfection sensitivity for space trusses with multiple coincident modes
involving buckling of individual members in the elastic range is presented. The advantages
of the approach presented here over previous studies on this subject are: (I) it provides the
worst shape of imperfection. as well as a simple relationship between the magnitude of the
imperfection (of the worst shape) and the corresponding drop in load carrying capacity of
the structure; (2) it is applicable for any truss type structure; and (3) it is computationally
efficient and avoids severely ill-conditioned calculations.

The approach is based on the decomposition and asymptotic expansion technique that
was pioneered by the mathematicians Lyapunov and Schmidt around the turn of the
century. and also later (apparently independently) by Koiter (1945) who applied the meth­
odology to structural problems. For the reader's convenience. the main general results

2385



2386 R. PEEK and :-;. TRI ..\~TAFYLLlDIS

from this Lyapunov-Schmidt-Koiter (LSK) decomposition and asymptotic expansion are
reviewed in Appendix A. Results for the worst shape of imperfection (Koiter. 1976:
Triantafyllidis and Peek. 1992) are also summarized in this appendix.

2. RESCLTS FOR :\ SINGLE MEMBER

In order to determine the postbuckling behavior of the structure. it is first nel.:essary
to establish a single valued and smooth expression for the strain energy of an individual
member as a function of member deformation parameters. One possibility would be to use
the member elongation. 1:'"", for member m. as the deformation parameter. However. a plot
of axial force versus elongation exhibits a sudden change in slope when the member buck Ies.
This means that second and higher derivatives of this strain energy function for the member
do not exist at this point. and renders the asymptotic expansion of the LSK approach
inapplicable. To overcome this problem. an additional out-of-straight memba deformation
parameter W'm) is introduced. which arises naturally in the solution for the postbuckling
behavior of a single member by the LSK approach.

More specifically. for the case of a member with constant cross-sectional properties.
the transverse displacenH:nts (in a coordinate frame that remains aligned with the membcr
endpoints) can be expressed as

( rrx) -W(X) = 11'1"11 sin ... + Wer).
[,m'

( I )

where ['''II denotes the length of the member before deformation. and ~i·(.n must satisfy
the orthogonality condition.

f"'"" (rrx) -sin W( X) dX = O.
n L 1m )

(2)

Note that upper case symbols U or W denote displal.:ements that vary along the length of
the member as a function of X. whereas lower case symbols 11'1'''' or 1:',,,,, denote sl.:alar
deformation parameters. Following the LSK approach. the member strain energy for
specified member elongation 1:""11 and out-of-straight deformation 11',,,,, is minimized by an
appropriate choice of U(.r) and ~V(X). where U(X) denotes the axial displal.:ements within
the member and ~i'(X) must satisfy the orthogonality condition (egn (2)). This leads to
a unique and adequately smooth strain energy fum:tion. 1/>''''1(1:'",.11''011' W,,,,,), where ~C'(m)
represents the imperfection of the member. At this point. the perfect strUl.:ture is I.:on­
sidered so that ~C/,ml = O. Using a formulation for slender columns (in the sense that shear
deformations arc negligible) but arbitrarily large displacements (Appendix B). yidds
the following results for this member strain energy 1/>'011 and its derivatives evaluated at

11""11 = ~V(m) = 0 :

1(EA) ,1/>'''11«'' o. 0) =.., "'['" eo.
- (m)

1/>''''1... (1:,0,0) = O. I/>(ml ..... (e. 0, 0) = o. (4)

At the bifurcation point for the member under axial compression. e,ml = -l:'e,,,,I' where
eelm) E rr~(s,,,,) ~ [(m) is the member shortening at buckling, and Simi E (I; A )i",~! [(ml is the
slenderness ratio, the following expressions arc obtained:

rr 2 (EA) ,
I/>~ml ...·~· = J -[2 (I +0(<;:»,

- (mf

(5)
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(6)

where £clml = 1t~(Slm))~ is the magnitude of the axial strain at criticality.
Equations (3)-(6) contain all the information that is needed in the subsequent analysis

of the overall system. They are based on an exact formulation for a compressible column
(Appendix B). However. the factor I +0(£;) will be dropped in the subsequent analysis
since £; is very small compared to unity in most applications. Using the corresponding
exact expressions given in Appendix B would introduce no additional difficulty into the
analysis. However. approximations introduced by neglecting shear deformations of the
buckled members would remain. and are probably of no less importance than the O(~)

terms in eqns (5b) and (6).

3. ANALYSIS OF OVERALLL SYSTEM (pERFECT CASE)

Let t' denote the collection of all joint displacement vectors for the structure. and
II' = (. " . II'lm" ••• ) be the collection of all member out-of-straight deformations. All these
quantities can be collected into a vector u == (v. w). which fully defines the configuration of
the structure. If the loads are applied at the joints only, and their magnitude and direction
is a function of ..l. only. the total potential energy can be written as

(7)
m

where P().) is a linear operator such that P(J,)v is the work done by the applied loads
through joint displacements t'. U describes the imperfections for the entire structure. and
the summation is carried out over all members m in the structure. In evaluating the
derivatives (or variations) of this potential energy. the following functional dependencies
must be considered:

where Vim) is the ditTerencet in the joint displacement vectors at each end of member m.
The Gateaux derivatives (sec Appendix C for detinition) of these quantities arc

(9a.b. 10)

(II)

where e5l', e5 1v, etc. and e5w. e5 1w. etc. denote variations in the displacements t' and II'

respectively; e5V lml is the ditferenee of the variations in joint displacement at each end of
member m; (511'lm, is the variation in the out-of-straight deformation of member m; x(m, is
the ditference in joint coordinates at each end of member m in the deformed configuration;
and I = (xlm ,' x(m,) I(Z is the deformed length of member m.

With the aid of eqns (7)-(9). the Gateaux derivatives of the potential energy can be
evaluated:

¢.ce5v = LN(m)e(m) .•,e5t' - P(..l.)e5v.
m

¢ .•,e5w = L¢(m,.•,e5W\m, ,
m

(12. 13)

¢,,,.(jZv(j I V = L¢(m).... (elm,.•.(jzv)(e(m).c(j I v) +LN(m)e(ml.ccc5 zvc5 1v.
m m

(14)

tSuch differences in displacements at each end of the member should be taken by defining a beginning and
end for each member. and always subtracting the displacement at the beginning from that at the end.
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(15, 16)

( IS)

( 19)

where N,,,,) = rP,m., is the axial force in member m.
For the perfect structure with no out-of-straight deformations of the members, sub­

stituting e\.jns (3) and (4) into eqns (13) and (15) yields

ifJ ..·(1'. 0, ;., 0)1511' = 0, ifJ., .. (I', 0, ;., O)<5!n)1' = O. (20a,b)

In view of eqn (20a) the equilibrium conditions, (P.,,<)1t = 0 (rP.I'<)c + ifJ.•.JII' = 0), are satisfied
if I\' = 0 and 1>.,<k = O. Therefore the principal solution must be of the form:

II () 0 •

II = /lU) = (1'(;.),0), <""'I = <'''<11(/.),
I)

N''''I = N"<I)()') (21 )

. . II) Iii Iii
and the equations for the buckhng modes It == (I', II') reduce to

I
III. .

0"1.1' (51' = 0 V ()p,
I, Iii ~ .

(1' ..... 11· Oil' = 0 V ()I\'. (22)

II' the operator </'. 1 , becomes singular, global buckling modes would devdop. This case
is not considered here. Instead it is assumed that (P.I' remains positive definite. while a set
of members /1/ E.\I reach their buckling load at ;. = ;.,. In this ease the following rdations
apply for all members /1/ E AI:

I) •

(:'(m.(..1·..,;) = -('~(m)"

I)

N(m)(}'C> = - Nq"'I' (P(m),I\u. = 0, (23)

where N"ml = 1t~(.\·~EA),,,,, is the buckling load for member /1/. From the last conJition, and
eqn «((I) it is seen that a typical buckling mode involves out-of-straight deformations of
some member iE.\I only, anJ can be written as

{tl (II (I) (I) Itl

II = (0,11'), II' = (.... w(ml'" .), II',,,,) = 0 VIII i'i. (24)

For convenience, the mode identifier i is taken to be the number of the member that buckles
for mode i. The mode normalization condition, cqn (A2), reduces to

(25)

where a dot pl~lccd above any quantity indicates that this quantity should be cvaluateJ on
the principal branch (as a function of ;. only), then dilTerentiateJ with respect to ;. and
evaluated at ;. = ;'e; i5

'J
is the Kronecker deltat; and 1>0 is an arbitrary positive constant.

Choosing (Po determines the values of i~\II' In order to facilitate the interpretation of the
algebraic results, this normalization is defined via the properties of a reference member.
which may, but need not, correspond to any of the members in the structure. Thus

tThere arc no implied summations Cor repeated indices throughout this paper.
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(:!6)

where any member properties identified by a subscript zero in parentheses correspond to
properties of the reference member. For linear prebuckling behavior. - ;.Jif!il = N"lil' and

therefore ~~IJl = L'il' for any member i whose properties coincide with those of the reference
member.

• (II Ij) Ikl. . . .
It follows from eqns (2~). (18) and (Sa) that cjJ"uuuu II II vamshes for alii.}. k. ThiS

indicates a symmetric bifurcation. Higher order postbuckling coefficients cjJ"kl defined
in eqn (A6) (Appendix A) are therefore required to determine the directions and curvatures
of the bifurcated equilibrium branches. The postbuckling coefficients in turn de-

d d· Iii) WI liil T d . h . . hpend on second or er Isplacements. U = ( t'. w). 0 etermme t ese quantItIes. t e
procedure outlined in Appendix A is followed: first the space of admissible displacements.
A. is decomposed as the linear span of spaces Ao and A. where ,.10 is the space spanned by
the eigenvectors and A is a complementary space. such that the zero vector is the only
clement that is common to both ,.10 and A. The obvious choice for this complementary
space IS

.~ = {II = (1'.1\'): W(ml = o'v' mE M}.

With the aid ofeqns (20) and (2~). the gener.1I equation for the second order displacements.
eqn (A5). reduces to

. IiI III . lIrI.. ,hI: (I) (j) ,J...e (t/) • .... (_"',")
«(jJ~'hh 1\' II' +(jJ~" /' )()I'+ (IV,"h'"II' II' + (V,hh' W)I)I\' = o'v' (I)c. Illl') E A. 11

('II un (11I.... • • •

where II = ( I' • 11'1 E II an: the deSired second order displacements. The variatIOn with
respect to II' together with eqns (16) and (18). and the observation that (Plml,h .. > 0 for 111 rj "'I
kads to I;;! = O. The variation with respect to v. and application of eqns (5). (17) and (26)

I I I I · I 1'1) (I' . . d (ii) d . .eal s to t Ie cOile lISlll!1 t la t /' = ) or I f:. }. an v are etermmed I rom

where

(N ,I." (Ill. 0
UtiletJl.,' + 11'•• '" v )Jv = . (29)

(30)

Thus the second order displal:ements I;;) represent the joint displacements due to an initial
tension NU(I) in the member i. as calculated by linearization about the critical point. (The
initial tt:nsion is treated as if it were caused by an infinitesimal thermal contraction.) By the
,Issumption that local bUl:kling modes develop before the global modes. positive definiteness
of (P~", is assured. Indeed. this operator represents the tangent stiffness matrix of the structure
with out-of-straight member deformations restrained. All second order displacements can
be obtained with only one factorization of this tangent stiffness matrix.

For the calculation of the fourth order postbuckling coefficients. ¢./kl. eqn (1\6) reduces
to

(31 )

Evaluating eqn (31) with the aid of eqns (5). (6). (17) and (19) yields

(32)
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_ I 1¢ j/ ~ ..l' ¢ i: ~ 2 I ill I 1 f! I{ I l .~ l
a _. \ (1\) 0 + (II) t! . If.. -~.~~ 'I, ,\r", ~,' _"l\ll)(')£"(,jJ'j J''i - l· 'II..... Iii 'i ilL".. "~I ")1 'f'1) - (_\') - -

.. (11

(33a.b)

and

represents the change in axial force in member i associated with the second order dis­
placements for the buckling of member j. Symmetry of the coeffIcients a" can be verified by

b
· . . (,,) .

su stltut1l1g c)c = r 1I1to eqn (29). However. in general neither the matrix [ad nor the
matrix [-a'j] is positive definite.

Having calculated the required postbuckling codlicients. attention is now focused on
the bifurcated equilibrium branches for the perfect structure. By application of eqns (A3)
and (A4). these can be written as:

;.(~) = i.<+ V.:(+O(~'),

_) 1")'(_) 1",,\,1'" , (-'r(c; = r (t. c; )+ :c;- L I'('X,)-+ )(.; ),
/• .\1

where ~ is the path parameter. and i., and 'X, must be solutions to

(35a,b)

Solutions to these equations can readily be obtained as follows: (I) Partition the set of
modes M into two mutually exclusive and collt:ctively exhaustive sets .\II) and AI" and take
:x, = 0 ViE A/ o ; (2) solve the system of linear eq uations

I a"y, = I ViE J/,_
,t: .\1,

for .1'/. jE M,; and (3) obtain the solutions for this partition as

(3(l)

':x, = ± Jy,j ( I .1'/),
f \ I'" .\/)

i.: = I/( I r,).
/1\1

(37)

The solution is real only when all .1', arc of the same sign.
Regarding the stability of the bifurcated equilibrium branches, applying eqn (A 7) leads

to the incremental stability matrix

8,/ = (-i'1+ I ll'k(:Xk)2)c5" V (i,j)E(M o x M,,) u (M" x M,) u (M, x A/o )
h.\f l

= 211,,:X,:X, V (i. j) E ,\1, x M " (38a.b)

This matrix must be positive definite to ensure stability of the bifurcated branches. Alter­
natively positive semidcliniteness is a necessary condition for stability. This in turn requires

-i. 2 + I (/,,(:x/)1 ~ OViEM".
}~\( I

(39)

Violation of this last condition for some iE Alo involves loss of stability for the member i

while it remains straight. This means that the member must be carrying an axial load in
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excess of its buckling load. Therefore eqn (39) will be referred to as the local. or member
stability condition. Solutions which violate this condition will be said to be locally unstable.
Locally stable solutions are not necessarily stable (since B'j still can have negative eigenvalues
corresponding to eigenvectors X, with X, = 0 If iE M 0)' Indeed all bifurcated branches on
which the load drops away from the bifurcation point U'2 < 0) are unstable.

Of particular interest is the postbuckling branch for which ;'2 is a minimum. since this
also provides the worst imperfection shape (see Appendix B). One way of determining this
branch is to find all postbuckling branches with the aid of eqns (36) and (37). and pick the
real solution for which ,4.2 is a minimum. This method quickly becomes impractical. since the
number of such solutions increases exponentially with the number of potentially interacting
modes. The preferable alternative is to solve the minimization problem given in eqn (A 10).
After substituting for the coefficients cPjjkl from eqn (32). this reduces to:

minimize

subject to

;'2 = L L atix,xr
iEM /EM

L x, = I. Xj ~ 0 If i E M
'EM

(40a)

(40b,c)

where x/ = (et;) 2. Despite the simple appearance of the minimization problem. it may have
many local minima, since the matrix of coellicients a" is not positive (or negative) definite.
Indeed any solution of eqns (36) and (37) is a potential local minimum. Fortunately,
however. the numerical examples of Section 5 suggest that the actual number of local
minima is much smaller.

It can he shown, using the Kuhn-Tucker conditions for optimality of the solution to
eqns (40) (see Appendix D), that the postbuckling branch on which the load drops most
rapidly is locally stable in the sense of eqn (39). More generally, local minima for eqns (40)
correspond to locally stable bifurcated equilibrium branches, and dee versa.

4. IMPERFECT STRUCTURE AND WORST IMPERFECTION SHAPE

The imperfections considered can be written as ii = t;ll, where f; is the sc.llar magnitude
of the imperfection and II is the shape of the imperfection, which will be normalized in
some fashion. The following types of imperfections are considered: (I) errors in the joint
coordinates in the reference configuration; (2) member misfit (a member is too long or too
short) ; (3) curved initial geometry of the members; and (4) eccentricities at the joints. For
the present case, when local buckling modes develop before the global modes, it is found
that the leading order effects are due to the imperfections (3) and (4) only. These
effects lead to a drop in load carrying capacity of the structure which is of the order /;2 J.

The other imperfections [( I) and (2)], on the other hand, have effects which are of the order
f; or higher, and will therefore not be included. The analysis provides results which are
asymptotically exact for small imperfections.

In view of these considerations. the imperfection ii can be characterized as

ii = ~V = (... , Wlm ), ••• ) = I: ~ji = c( . .. , ~V("'" ...), (41)

where ~V(m' = ~V(",)(X) define a transverse geometric imperfection for member m. with
WI"" = 0 If X representing a straight member with zero eccentricities at the ends (see Appen­
dix B for details). The projections of the imperfection shape [eqn (A9b)] which determine
the postbuckling behavior of the structure, are given by
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where

(43)

is the amplitude of an equivalent sinusoidal imperfection.
The worst shape of imperfection corresponds to t, = :Xi' and hence to

(44)

It can readily be verified that the imperfection norm

(45)

satisfies the conditions outlined in the last paragraph of Appendix A. and leads to a worst
imperfection shape that involves sinusoidal imperfections of amplitude 11'10 given by eqn
(44) for the members i EM I. and no imperfection for the other members.

In summary. the proced ure for finding the worst imperfection shape, and the cor­
responding load drop is as follows: (I) obtain the solution for the principal branch using
elfn (12) and locate the bifurcation point )'c at which members ttl E 1\1 reach their buckling
load. (2) Calculate the second order joint displacements from eqns (29) and (30). (3) Obtain
the coetlicients a" from eqn (33). (4) Solve thc quadratic programming problem. elfn (40).
(5) Calculate 'X, = ± jx,. Finally. (6) the worst imperfection shape is givcn by eqn (44).
and the corresponding load drop for any given amplitude of imperfel:tion by eqn (A 10).

5. EXAMPl.ES

5.1. Descriptioll olstrt/ctures cOII.vitlal'll

Typical exampks considered are shown in Fig. I for planar trusses and Fig. 2 for space
trusses. Therein members in compression are shown as continuous lines, whereas those in
tension are dashed. The member nexural rigidities, El. are chosen such that all members
in I:ompression reach their buckling load simultaneously. Consequently the number of
potentially interacting modes in every truss equals the number of its members under
compression in the principal solution.

The dimensions of the structures analysed are as follows: All members for the two­
dimensional trusses of Fig. I have length. L, except the diagonal members for the rectangular
truss in Fig;' Ib~ which are of length j2L For the three-dimensional trusses of Fig. 2, the
chord members (i.e. those parallel to the :-axis) arc of length L, and the cross-section is
such that the chords fall on a circle of radius L. Thus the length of the tics (i.e. the members
parallel to the x-y plane) are J3L for the triangular cross-section of Fig. 2a, and J2L for
the tics parallel to the x or y axes in Fig. 2b.

The trusses are construl:ted from identical unit cells. However, the number of unit cells
and their arrangement varies: for example. the hexagonal truss of Fig. la has a radius of
2L. Hexagonal trusses of radii Land 3L (as shown in Table I) are also analysed. The joint
numbering system for these follows the same pattern established in Fig. lao Tables I and 2
also illustrate the various arrangements of unit cells considered for the rectangular truss of
Fig. Ib. as well as the "antennae" of Fig. 2.

The displacement boundary conditions for the two-dimensional structures are illus­
trated in Fig, I. For the three-dimensional structures with fl bays. all joints in the plane
through poi~ts An. Sn and C. are restrained in the :-direction. Sufficient restraint in the x­
and y-directions is also provided to prevent rigid body motions. Since these x and y restraints
do not produce any reactions. their exact configuration docs not innuence the results
reported here. The applied loads and reactions are shown in Figs 1 and 2. They do not
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fig. I. Two-dimensional example trusses.

change direction. However the magnitude of the reactions shown in Figs I and 2 applies
only for the principal solution.

All members have the same axial rigidity, EA. However, to simplify the prebuckling
solutions, member sites that are shared by two unit cells (e.g. member sites on lines Ao1 ­

A It' A lo-A 12, A 20-A 22 and A 30-A 32 in Fig. 1b, and member sites on planes through points
A" B I and C I in Fig. 2) are occupied by two identical members. This results in identical
stress states in each unit cell for the principal solution, regardless of the overall size of the
structure. Although the hexagonal trusses can also be constructed from unit cells, here only
one member occupies each member site; identical prebuckling forces, N(ml = - A, in all
members are achieved by appropriate choice of the external loads.

For the purpose of mode normalization, the length of the reference member is taken
to be L(o) = L, j2L, L, J2L for the structures of Figs la,b and 2a,b respectively, and the
reference member buckling load is taken as NeIO) = ~ = EAe" where ee, the buckling strain
of the reference member, controls the slenderness of the members. For the hexagonal truss,
f.e also represents the buckling strain in all the members. For other structures, the member
buckling strains differ, but are still approximately proportional to E:c.

Following the discussion in Section 4 (see also Appendix A), the worst imperfection
shape for a given truss is determined by the bifurcated equilibrium branch of the perfect
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Fig. 2. Thrcc-dimcnsional cxamplt: trusscs.

structure for whieh i.~ is a minImum. This will be referred to as the critical bifurcated
branch. It follows from dimensional analysis considerations alone, that the dimensionless
curvature of the critical bifurcated branch, ;'2/;'e, depends only on Le (and not on EA or L).

5.2. Computational strategies used
Since the structures considered exhibit essentially linear prebuckling behavior (as long

as Le < 0.1), a standard Newton Iteration procedure provides rapidly converging solutions
on the principal branch of the perfect structure. Such solutions can also readily be extended
to the point where global buckling modes develop (i.e. 4) .•.,. becomes singular). The value of
the reference strain i./EA at the point where the fIrst global buckling mode develops is
shown in Tables I and 2 as f"g' As expected, L<g is seen to depend on the slenderness of the
structure as a whole. (Recall that, in contrast, L< determines the slenderness of individual
members.) Only trusses for which L< < L<g arc considered, so that local buckling occurs
before the global bifurcation load is reached, and 41.,," remains positive definite.

To find the bifurcated equilibrium branch of the perfect structure with the minimum
curvature ;'2()-2 < 0), two different strategies are used: a direct approach and an opti­
mization approach. Although it cannot be asserted with 100% certainty that these methods
provide the global minimum, there is every indication that for the examples considered, the
solutions obtained are indeed globally minimal.
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Table 1. Results for two-dimensional examples

£C. 0001 I~I A.c= -329 mode AoBI, 6,e. (. sym modos In <. yl

£Cg -0249 £C. 001 ~/~= -331 mOde AoBI, 6,6. (. sym modes In <. yl

~
£C. 01 ~/~,", -346 mode AoBI, 6,6. (0 sym modes In •. yl

£C. OS ~I A.c= -.30 mode AoBI, 6,B. (0 Sym modOS In •. y)

£C. 1 ~/~= -597 mode AoB" BzEh (. Sym modes In •. yl

£C. 2 ~/~= -2785 mode AoBl (. sym modes In •. y)

£C. 000 I ~I A.c= -288 mOde 61CZ, BICZ 161C., 6,C. (. Sym I
€cg - 0 149 £C. DOl ~/~= -289 mOde 61Cl, BICz/61C., 6,C. (. sym)e €c' 01 ~I A.c= -J 05 mode BICl, 6zCz IBzC., 6,C. (. sym 1

£C. OS ~/~= -395 mOde 61CZ, 6zCz/BIC•• 6,C. CO sym I

£C. 1 ~/~= -898 mOde 6166, CICZ (. sym modes In <. yl

€c'2 ~/~= mOde gloOal

€cg - 0124 €C. 0001 I~I A.c= -288 mOde C10Z, Czoz (. sym modos In '. y)

-
€C. 001 ~I A.c= -289 mode CloZ. Czoz (. sym modos In '. yl

€c' 01 ~/Ac= -305 mOde CloZ, Czoz (. sym modos In '. y)

€c' OS ~I A.c'"' -395 mOde CloZ, Czoz (. sym modes In <. yl

€c' I ~/Ac" -1525 mOde oloZ (. sym modes tn <. YI

F~· 2 ~/A.c= mode gloOdl

Ec' 0001 IAz' A.r,=-227 8< mOde 5 memOers (ODtlmlzatlonl

€cg· 0 00241 €c' 001 ~I Ac=-J52 7\ mode 5 memoers (oDtlmlzatlonl

~~
€C. 01 ~/Ac= mode glooal

€C. OS ~/Ac= mOde glooal

1)( 16bays €c' 1 ~/~= mode gloOal

Ec' 2 ~/A.c= mode gloOo'

€c. 0001 ~/1.c= -5120 mode A70AIIO,A7IAIO (. sym modes In •.
€cg - 0 0212 Ec· 001 ~I Ac=-S425 mOde A70AIIO,A1IAIO (0 sym mM., In <m::m Ec- 01 ~I A.c=-<lJ 15 mode A70AIO.A11AIO (••ym mad., 'n <

Ec· 05 ~/A.c= mode gloMI

2)( 8 bays €c' I ~/Ac= mode gloDdl

Ec· 7 ~lA.c= mode gIODa'

Ecg· 0 'so Ec· 0001 IAz/Ac=-IO II mOde 7 memo!'. (ODtlmlzatlonl

II
Ec· DOl ~/Ac=-IO 18 mode 7 memOers CODtlmlzatlonl

Ec' 01 ~/Ac,",-1092 mode 7 mtmO~r5 (optimizatIon)

Ec' OS ~I Ac=-IS 71 mode 6 m~mbers (optimization)

Ec' I ~lA.c=-J7 18 mode 6 member, (optimization)

F~· , A,.,I A~" mode qlooo'
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The direct approach is based on finding solutions to eqn (36) for various choices of
the set M ,. Since the number of possible sets lvI, grows exponentially with the number of
potentially interacting modes, it quickly becomes impractical to consider all possible sets
1U,. Furthermore. it was observed that the critical postbuckling branch typically involves
buckling of only a few members. Therefore. only sets M, that involve buckling of up to
live members arc considered. Even then. the number of possible sets M 1 (a sum of binomial
coetlidents) can become staggeringly high. For expediency, the number of possible sets M,
is therefore further limited to 500,000 starting with those that involve buckling of the fewest
members.

As an alternative to the above direct approach. the quadratic programming algorithm
by Schittkowski (1986) is used to solve the problem defined by eqns (40). This proved very
etlicient even for rather large numbers of interacting modes (up to 100). For all the examples
considered. several initial guesses lead to the same final optimal solution. Moreover, for
problems with a relatively low number of interacting modes (up to about 40) where the
direct approach is feasible, the results from the optimization method are always in agreement
with those from the direct approach. In other cases (identified in Tables I and 2 by the
word optimization in parentheses), none of the 500,000 solutions calculated by the direct
procedure were real and locally stable, and it was necessary to rely on the results from the
optimization approach alone.
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Table 2. Results for three-dimensional e\amples

£c- 000001 1A.:t/A.,,= -419 mode AoAI,BoAl,COA1(' SyM IMOOS'

£c- 00001 "'-:1 A.,,= -419 mode AoAI.BoAI.CoAI (. SyM moO"s)

£c- 0001 "'-:1 A." = -420 mode AoAI.BoAI.CoAI (. sym moO"s)

£c- 001 "'-:1 A."= -42J mode AoAt.BoAI.CoAI (. sym moO"sl

£C-Ol "'-:1 A."= -459 mode AoAI.BoAI.CoAI(· SyM moo"sl

£c- I "'-:' A.,,= -7J 75 mode AoCI,BoAI.CoBII A06I.8OCl,COA

Ec- 000001 fI.Z1 A.c= -JO 51 mode J m"mD.rs (ootlmlntlon)

£c- 01 "'-:1 ~c= -J771 mode A4As.B4A,.C4A5 (. sym moo"s)

Ecg· 00474~ Ec- 00001 "'-:1 A." = -J052 mode 5 m,MDers (OotIMlzatlon)

5 ba~.s _ II'.I~~_~'~:~It-::£c::"--':;OO:':O:'::I~-tt",-::';,'A.c;;;=::-- J::0:-:5:::7+m::-:0-:-de:-:5~m~':"M~D':'"r":'S':'(0::0':':t l':'m':':lz'::at:':':lo:':':n:"")--I
_ _ £C- 001 "'-:1A.c= -Jl.l0 mode 5 m"mD.rs(oOtlmIZatlon)

Ecg· 00126

10 bays

£C-OOOI "'-:/~c= -6J65 modeA9Alo.B9Alo.C9Ato(·sym mOOesl

Ecg • 0 102 £c- 000001 IA-,I A,c=-5223 mode AoOl.CoOl.DoDI

£c- 00001 "'-:' A.c=-52 24 mode AoOl.CoDI,DoDI

Ec-oool A.:t' ~c=-52 29 mode AoOl.CoOl,DoDI

Ec. 01 "'-:/~c"'-5651 mode AoOl,CoDI,DoDI

f"r" I rx.;t ~c=-6,914 mode AoDl,CoDl

Ec~ • 00237
£c" 0000 I A.:t' ~c"'-219 6 I mode AJD"C1D4,DJD.

£c. 00001 "'-:1 ~c=-443 5 mode A7Ds,C7Ds,D7Ds

Ec. 0001 "'-:/~c"-446 16 mode A7Ds,C7Ds.D7Ds

Ec. 001 "'-:1 ~c=-500 5 mode A7Ds,C7Ds,D7Ds

Ec~ • 000816 Ec.O I "'-:1 ~c= mode glooal
8 bays I-~c .•..;.::I.:.---ll...:-ix..il:-:;~:-=-r'=--+m;.:O:.:d..:.e-q;:...I.:..OO..:.a-1--------1

5.3. DisClissiot! 0/ resulls
The results for all 12 trusses considered are shown in Tables I and 2 for various values

of the parameter I:c . For small values of I:c (slender members), the curvature of the critical
hifurcated branch. -ill).c, is seen to approach an asymptotic value (independent of f;J.
This corresponds to the case investigated by Britvec (1973) and Britvec and Davister (1985)
in which compressibility of the members is neglected. Indeed, for a selection of the examples
considered by Britvec (1973), the current analysis gives results that are in agreement with
his. Even for essentially incompressible members. the slenderness of the structure as a whole
has a strong etlcct on the postbuckling behavior and irnperlcction sensitivity. with )dic
being larger when the structure as a whole is more slender.

For larger f:c (stubbier members), )'2/).c increases in magnitude, and it becomes very
large as the local buckling load approaches the global (i.e. as f:c -> I;c~)' This is not surprising.
since cP.,,- becomes singular in this case, resulting [via eqn (29)) in large second order
displacements, which in turn [via eqn (33)] produce postbuckling coefficients a" of large
magnitude.

The dependence of ).2/)'" on Cc is further illustrated in Fig. 3 for a I x 4 bay rectangular
truss made of four identical square unit cells each of side L(o) and a I x I bar truss of
dimensions L(ol x 4L10l . Global bifurcation for these structures occurs at I;,~ = 0.0375 for
the 1 x 4 bay truss. and at f.c~ = 0.0309 for the somewhat more flc:->ible I x I bay truss of
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Fig. 3. Results for rectangular trusses of overall dimensions L,o, x 4L,0).

the same overall dimensions. Clearly )d)'" is seen to approach infinity as the local buckling
load approaches the global one. This implies that the imperfection sensitivity becomes
infinite under such conditions. It must be borne in mind. however. that this result applies
only for infinitesimally small imperfections. Actual imperfections are finite. and so is the
drop in load carrying capacity they produce. Hence the limits of applicability of the
asymptotic results must become vanishingly small as the local modes approach the global.
Under such circumstances. the interaction between local and global modes should be
explicitly included in the analysis. before any meaningful conclusions in regard to imper­
1i:l:tion sensitivity I:an be drawn.

Similar results are observed in Fig. 4 for a 2 bay space truss of the type shown in Fig.
2a with an equilatc:ral triangular section of sidelength Lrnl and an overall length IOL(()l' and
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CRrnCAL REFERENCE STRAIN £c

Fig. 4. Results for triangular section antennae of overall dimensions L(ol x 10L,o,.
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a I bay space truss of the same overall dimensions. Global buckling for these structures
occurs at Ge8 = 0.0165 and Geg = 0.0148. Again, for the same overall dimensions. the structure
with a larger number of bays has the higher global buckling load. For essentially incom­
pressible member behavior on the other hand ;'~;;'e seems not to depend on the number of
bays that a given structure of fixed overall dimensions is divided into.

The members that buckle on the critical bifurcated branch of the structure are listed
in the last column of Tables I and 2 as the "mode". In most cases a given mode is seen to
persist for a range of values of Ge • However, changes in the mode do occur: there seems to
be a tendency towards buckling of a smaller number of members as Ge increases towards
Gcg • but changes in mode that are not accompanied by changes in the number of members
that buckle also occur, for example for the hexagonal truss of radius L.

6. CONCLUSIONS

A methodology has been established based on the Lyapunov-Schmidt-Koiter
decomposition and asymptotic expansion. by which the worst imperfection shape and the
corresponding load drop for any truss-type structure with multiple eigenmodes that involve
buckling of individual members can be determined. This problem reduces to a quadratic
programming problem, in which the number of unknowns is equal to the number of
interacting modes. Although the computational effort for finding the global minimum with
100°1<1 certainty grows exponentially with the number of modes, it appears from the examples
considered that in most cases the glohal minimum can be found much more efficiently. The
results arc asymptotically exact for small magnitudes of the imperfection.

The method is effective for essentially incompressible member behavior [the case
considered by Rritvec (1973) and Rritvcc and Davister (1985)]. as well as for compressible
members. The imperfection sensitivity increases with increasing member compressibility
(stubbier members). and becomes infinite as the local memher buckling load approaches
the bifurc<ltion point for global buckling. Under such conditions, the range of validity of
the current <lnalysis is expected to become vanishingly small; an analysis in which interaction
of local and global modes is explicitly considered should be used.

Ackflowlccfq("1/"·flIJ···The aUlhurs arc indehted to LJr J;inos Llig() of lhe Civil Engineering LJepartment of the
Technical University of Budapesl for identifying and making available the optimization software used. This work
was supported by the National Science Foundation as Grant No. MSS-91 03227 and CES-8H570()2. 1nilial supporl
was also provided by UNISTRUT Space Frame Systems.
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APPENDIX A: GENERAL RESULTS FOR A MULTIPLE SYMMETRIC BIFURCATION

This appendix summarizes general results from the Lyapunov-Schmidt-Koiter asymptotic postbuckling
theory that are used in this paper. These results apply when: (I) The structure is elastic with a sufficiently smooth
potential energy function cP = cP(u.A.,ii), where ueA is the displacement field. A. is the load parameter. and iieA
represents an imperfection. (2) The sets of admissible displacement and imperfection fields, A and A respectively,

are vector spaces. (3) A smooth principal solution ~(A) exists which vanishes at A =0 and satisfies the equilibrium

condition. cP.(~(i.). i., O)<5u = O. for all <5u e A. and A. e [O.).,..~). where A: > ).,... (4) Equilibrium states on the principal

branch must be stable for A. e [0. A.e ). in the sense that the bilinear operator. cP._(~(A.). A,O). is positive definite. (5)
At criticality (A. = A.c) this stability operator has a finite dimensional nullspace. Ao. (6) The basis vectors for this

nullspace are buckling modes denoted b)' oil. and satisfy

(AI)

where the superscript c on the potential energy cP and its Gateaux derivatives denotes evaluation at criticality. (7)
The buckling modes are orthonormalized so that

(A2)

where ,p" is any positive const'lOt, and can be ch,'sen to achieve a convenient normalization.
The bifurcation is said to be symmetric if

f"r all combinations of modes. i.;. k. In this case the .~olution for the bifurcated equilibrium branches of the
perfect structure is of the fonn

A(~) = ).,+ j).l~l+O(~'). II(~) = ~O(~))Hr,ctl'IJ+ Wr,ctjct,'W+O(e').
I 1,/

(A3)

when: ~ is a path paramcler which is approximately e4ual to the distance of the solution to the principal bmnch.

',l' arc second order displacements to be defined in e4n (AS), and the p'lrameters <X, and Al are solutiuns to

(M)

where the postbuckling coetlicients cP,/" arc determined as follows: (I) Decompose the space of admissible

displacements A intu th.e space Au which is spanned by the buckling modes 'IJ. and a complementary space A.
dclined su that A" and A span the space A. but the lero vector is the only element that is common to both Ao and

.4. (2) Find second order displacements. '~' e Asuch that

w...'i1'~1 + t/!~•.'~I )Jii = O. II Jii eA. (AS)

Finally. (3) the postbuckling coefficients can be calculated from

,I. =! ,I.' 'll '// 'V lil + A.' 'u"('}1 (Ill + 'u" "ull + (I) U4I)} /A. _ {A.e 111'111" (I, A.e ("II W, ,lot, (jt) IU) (jot') I/A.
~"" 1".14""11 0/._ U U U U '1"0 - 'f',..".",U U U U -'1'._ U U + U II + U U 0/0'

(A6a.b)

The bifurcated e4uilibrium branch defined by e4n (A3) is stable in the vicinity of the bifurcation point. if the
incremental stability matrix

B,/ = -).A/+r,cP",,<x,Cl, (A7)
'J

is positiv'e definite.
. For most problems the potential energy.cP can be wrillcn as a sum of two terms: the first depends on thc

dlspl.lcements II only. and represe~ts the str~1O energy of the structure; thc other term represents the potential
energy of the loads. and can be wnllen as - -I6(u). W:here 6(.) is a linear function. If the structure is loaded by a
slOgle POlOt load of magmtude ). and constant direction. then 6 = 6(u) represents the deflection under the load.
Budlansky (1974) refers to 6 as the generalized load shortening. Using his approach to evaluate this quantity on
any of the bIfurcated branches for the perfect structure yields:

6 = 6(uW) = 6 0 + !cPo~J+O(eJ).

where A" is the generalized load shortening evaluated on the principal equilibrium branch at A= A(e).

(A8)
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Next consider an imperf~tionu= tri. where E is the scalar imperfection amplitude. and Ii is the shape of
imperfection. normalized so that

where (A9a.b)

For small magnitudes of the imperfection E. the behavIOr In the vicinIty of the bifurcation poinl depends only on
the projections [,. The largest load drop (defined as i.,-'<L' where i. L is the value of the load parallJeter at the first
hmlt POint. for the Imperfect structure) for a given (small) amplitude of imperfection occurs for [, = 2" where 2,

IS the solutIOn to eqns (A4) for which'<, is smallest. Assuming that this .<, is negative. the corresponding normalized
load drop is

(AIO)

So far only the ",:orst shape of the projections to have been sktermined. In general there is an infinite set of
impcrft'Ction shapes u. all of which have the same projections .;,. In order to obtain_a unique solution for the
imp:rfection shape, it is necessary to define an imperfection norm. such that for any r;i satisfying eqn (A9a) : (I)
all Ii satisfying eqns (A9b) also satisfy the condition 1111 il :;;, I. and (2) there exists a unigue Ii which satisfies both
eqns (A9b) and the condition liz/\I = I. This last z/ is the worst impcrfcction shape if (, are worst values for the
projections of the imperfection shape.

APPENDIX B: POSTBUCKLING ANALYSIS OF A COMPRESSIBLE COLUMN

Surprisingly. ;\0 exact initial postbuckling analySIS for an clastic compressible column appears not to he
available. The closest that could be found is the analysis by Britvec (1973). in which an unnecessary assumption
regarding the distrihution of slope along the column is made. The reas,," for this may be that a substantial amount
of algebra is involved. Furthermore. the results merely conlinn that for slender columns compressibility efTects
arc not important in the postbuekling range. The assumption that the column is compressible in the prebuckling
range. hut free/es ;lxially once the critical load is reached (Kondoh and Atluri. 19K5) is well justified. Indeed. for
smallcr values of the slenderness ratio. when compressibility elTects might pl;ly some role. shear deformation will
also hccome important. and perhaps more so. Nevertheless. for the sake of completeness. a brief summary of
the f'lflnulation and final results from the postbudling analysis of a compressible column with speeitied end
,!Jsplacements (but no restraint ag;linst end rotations) by the I.SK technique is given here.

Planar deformation in the X 7. plane is considered. where the X-axis always passes through the endpoints of
the l11emher where the loads arc applied. The initial and deformed geometry of the eentroidal axis of the column
arc written as

R(.r) = Xc, + H'(X)c/, r(.n.= {X(I+<,/L)+UCt"):c,+(If'(X)+W(X>;c1' (IJ I)

respectively. where C", e r • and CI' arc the unit vectors in the X. ~'and Z directions. Member quantities delined in
the main body of the paper arc not reddined here. and the subscripts in parentheses identifying the member to
which they pcrtain arc omitted. Thus. for example. <' denotes the spt-cified member elongation. The set of admissible:
displacements A includes all displacement functions (U. IV) that vanish at the endpoints. X = O. l.. For the
lIloment. the impcrfe:etion If! is also assumed to v;lI1ish at the endpoints. The measures of a"ial and bending
deformation. r. and 11:. arc taken to be:

IIr' II-IIR' iI
r. =

IIR'I

0' -{J',,= -,_.-
ilU'il'

(R' xc)· R"
IT' = --_.-.-':--,--

IIR'II' .

(r' xc,)· r"
II' = ,-,---­

II r'lI' .
(B~)

whe:re a prime denotes ditTerentiation with respcct to X: and IJ = !Jet") and II = II(.\") denote the rotation of the
longitudinal axis of the column before and after deformation respectively. (The rotation produced by the loads
is /I tI)

The potential energy of the column is given by

.r f'· (EA. 1::1 ')' ,</>(U. W.l'. ..../ =;;.1:"+ ;;-11:" IIR'II d.l.
o - -

(B3)

where EI = s'L' I::A is thc nexural rigidity of the column. Thc arguments of this potential energy functional arc
cnclosed in sljuarc brackets, to distinguish the functional (/>[., ..... J from the reduced potential energy function
(Pc. ... )defined later. for which the arguments arc enclosed in parentheses instead of brackets. Stationarity of the
potential energy with respect to U and W leads to

_1_(EIII:)'n-EAr.t = constant.
IIr'lI

n=txc y. (B4)

which coincides with the equation that would be obtained from equilibrium considerations. if the axial force and
bending moment at any poinl in the column arc taken to be EA, and EIII:. respectively. Th,s Illustrates the
advant;lge of using the deformation measures. e and 11:. defined in eqn (B2). Other deformation measures. would
produce much the same final results as long as strains in the column arc small. but they would also lead to dillerent
(and potentially more complicated) equilibrium and/or constitutive equations.
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The principal solution is U:: W:: O.
The first bifurcation occurs at e :: -eo :: -£cL. where the buckling strain. £C. is given by

1401

(B5)

This exact expression is within a factor of (I +O(e,)) of the approximation ec :: n2s2 used in Sections 2 and 3. The
buckling mode is

III II)

U(X) = O. W(X):: sin (1tX/L). (B6)

In following the LSK technique the set of admissible displacements A is decomposed as the linear span of the
eigenspace Au and a complementary space Aas follows:

Au:: {(V. W): V:: O. W(X) :: ... sin (d'/L)}. A:: {(V. W):rW(X) sin (nX/L)dX = o}. (B7a.b)

where ... is the scalar out-of-straight deformation of the member. Using this decomposition. the reduced potential
energy can be defined as

• (11 • .F,
cP(e..... ~'):: min cP[V....W+ W.e. I?'].

((."'IE .•

(B8)

Although the authors are not aware of any closed form solution to this minimization problem. it is possible to
resort again to an asymptotic e:'tpansion to obtain the first few terms in a series representation of the reduced
potential energy. or equivalently. to obtain the derivatives of the reduced potential energy evaluated at the
bifurcation point. After a substantial amount of algebra (some of which was done with the aid of a computer and
the MACSYMA program) the results obtained for the derivatives of the reduced potential energy evaluated at
... = It' '" 0 arc those given in eqns (3) and (4). These results arc e:'tacl. Additional derivatives of the reduced
potential energy arc given in eqns (5) and (6). Where these results contain a factor I +O(r';). the corresponding
exact results ;arc:

- n 2 EAr., rt. -
cP~.IJ·W = - -UJ.. It'(X) sin (1tX/I,).

(INa c)

The approximations in eqns (5) ami (6) are within a factor of (I + 0(1:,2» of these exact values. Further approxi­
mation in ~'qn (6) would be possible while maintaining accuracy to within ;a factor of (I +0(£,,». However. in this
C'lse. the results for the post buckling behavior of the column would reduce to those for the moderate deform.ltion
theory. which predicts th'lt axial load remains const;ant with incre;asing displacements after buckling occurs.

Fin'llly. some discussion with regard to thc ;assumption that the imperfection It' vanishes at the endpoints is
in order: since the formul;ation is based on arbitrarily large imperf~'Ctions. it remains valid for an imperfection
that contains rapid changes in It' in the vicinity of the endpoints. Thus end eccentricities can also be represented.
and eqn (43) is still valid for calculating the equivalent sinusoidal imperf~'Ction. Note however th;at this ;analysis
applies for link clements (i.e. the elements with length equal to the eccentricities that provide the connection
between the column end points and the point of load application) consisting of a short segment of the column.
If these links are to be replaced by rigid links. an alternative formulation is required. since this introduces a
nonlinear essential boundary condition. ;as a result of which the set of admissible displacements of the centroid
of the cross-section no longer form a Vl'ctor licld. Such an alternative formulation leads to the same result as eqns
(89) and (43) to within a factor of (I +O(r.,)).

APPENDIX C: DEFINITION AND NOTATION FOR GATEAUX DERIVATIVES

Let F: (V x V) - W be a m'lpping. where U. V and W arc v~'Ctor spaces. Assuming suitable smoothness.t
the limit

. F(U+r.<lU.l')-F(u.L·) [d ]
F.•<lu;: 11m ---------= - F(u+ee5u.l')

.1 •• 1) I: dE .1-0
(Cl)

exists. and is linear in e5u. Thus the Gateau:'t derivative F.• is a linear operator. For fixed e5u. another mapping
(F..e5u) : (V x V) - W can then be considered and the above definition can be reapplied to define higher Gateaux
derivatives. For example.

(e2)

Note that the nth Gateaux derivative is an n-linear operator. All n arguments always follow the Gateaux derivative.
except that any scalar arguments (corresponding to the case when V and/or V is the set of real numbers) arc

t Norms are required on the spaces V. V. W to define the notions of smoothness and existence of the limit.
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omitted from the list. These may be mcluded as scalar multipliers at any other location. since in this case the
GatealU derivative reduces to the usual partial derivative. The order of the subscripts is always opposite to that
of the corresponding arguments of the n-Iinear operator.

Although no norms appear explicitly in this definition. addressing existence of the Gateaux derivative docs
require norms. Frechet derivatives could also have been used throughout this paper. However their definition
does require the explicit use of norms. and is less suggestive of their meaning or method of evaluation. That is
the only reason why the Gateaux derivative is preferred here.

APPENDIX D: PROOF OF LOCAL STABILITY

Suppose the inequality constraint in eqn (4Oc) is replaced by x, ~ b,. and that these inequality constraints are
active for all iE Mil' If b, is increased for some iE J/" then the inequality constraint becomes more restrictive ami
the minimizing ;.: should increase. Thus a necessary condition for optimality is l'A:!I'b, ~ O. This derivative is
given by l'A:,'cb, = -/1,. where /1, (iEMo) is a Lagrange multiplier. which is determined by requiring that the
Lagrangian.

L = I: I: a"X,Xf+ll( L: X,-I)+ I: 11,(X, -h,l.
,"".\1 ~H ~H 1£\11)

(DI)

be stationary with respect to x, (i E Jf). and the Lagrange multipliers II, (i E Mil)' and II. Stationarity with respe,t
to x, (i EM I) recovers eqn (35a). and leads to II = - 2;. ,. With this result. stationarity of the Lagrangian with
respect to Xi (iE Mil) prvdu,es.

ViEM". (D21

Thus the lo,al st"hility ,ondition. eqn (39). holds for the postbuckling hran,h whi,h minimizes ;.,. as required.


