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Abstract—Optimally designed truss type structures whose joints do not transmit moments often
have a large number of coincident buckling modes. Each mode corresponds to the buckling of an
individual member. Due to the interaction between various simultaneous modes, such trusses
can be sensitive to imperfections. This problem is analysed using the Lyapunov-Schmidt-Koiter
decomposition and asymptotic expansion technique. The shape of the imperfection that maximizes
the load drop is determined from the postbifurcated equilibrium branch of the perfect structure on
which the load drops most rapidly. It is shown that this branch is obtained by minimizing a
homogeneous quadratic form subject to linear inequality constraints. The general theory is illus-
trated by several examples involving two- and three-dimensional trusses.

I. INTRODUCTION

Lattice type structures are not only common for applications on the ground such as lattice
roofs, radio antennae, crane booms, dishes of radio telescopes and lattice domes ; but are
also being envisioned for applications in space. including lattice columns, communications
platforms, radio-astronomy dishes, solar pancls, reflectors and other structures. With the
advent and increasing availability of higher strength materials, buckling often becomes a
critical design consideration. This is especially true for applications in space, due to the
combination of large structural dimensions, small loads and the importance of weight
minimization (although the limitation of deflections is also an essential consideration in
this cuse).

Often such structures are optimized so that, as the applied load is increased, a number
of members reach their buckling load at the same time. Buckling of any member corresponds
to an cigenmode for the system as a whole. Thus, an optimized structure can have a lurge
number of coincident cigenmodes.

It has long been established (Koiter, 1945) that multiple coincident eigenmodes can
lead to high imperfection sensitivity of the structure’s load carrying capacity. For example,
the load carrying capacity of a cylinder in axial compression can drop by a factor of five
or more due to imperfections. Lattice structures can also be sensitive to imperfections
(Wright, 1965, 1966a ; Castafo, 1989 ; Britvee, 1973 ; Britvec and Davister, 1985) : a lattice
dome in Bucharest failed at an estimated load of about 40% of the theoretical buckling
load for a perfect dome (Wright, 1965, 1966a). The high imperfection sensitivity of lattice
domes was further confirmed by experimental results reported in Wright (1966b). Lattice
columns are also very imperfection sensitive when the overall column buckling and member
buckling occur at approximately the same level of applied load (Thompson and Hunt,
1973 ; Crawford and Benton, 1980 Elyada, 1985). In this paper a general methodology for
determining the imperfection sensitivity for space trusses with multiple coincident modes
involving buckling of individual members in the elastic range is presented. The advantages
of the approach presented here over previous studies on this subject are: (1) it provides the
worst shape of imperfection, as well as a simple relationship between the magnitude of the
imperfection (of the worst shape) and the corresponding drop in load carrying capacity of
the structure; (2) it is applicable for any truss type structure ; and (3) it is computationally
efficient and avoids severely ill-conditioned calculations.

The approach is based on the decomposition and asymptotic expansion technique that
was pioneered by the mathematicians Lyapunov and Schmidt around the turn of the
century, and also later (apparently independently) by Koiter (1945) who applicd the meth-
odology to structural problems. For the reader’s convenience, the main general results
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from this Lyapunov-Schmidt-Koiter (LSK) decomposition and asymptotic expansion are
reviewed in Appendix A. Results for the worst shape of imperfection (Koiter. 1976
Triantafyllidis and Peek, 1992) are also summarized in this appendix.

2. RESULTS FOR A SINGLE MEMBER

In order to determine the postbuckling behavior of the structure. it 1s first necessary
to establish a single valued and smooth expression for the strain energy of an individual
member as a function of member deformation parameters. One possibility would be to use
the member elongation, ¢, for member . as the deformation parameter. However, a plot
of axial force versus elongation exhibits a sudden change in slope when the member buckles.
This means that second and higher derivatives of this strain energy function for the member
do not exist at this point. and renders the asymptotic expansion of the LSK approach
inapplicable. To overcome this problem, an additional out-of-straight member deformation
parameter w,,, is introduced, which arises naturally in the solution for the postbuckling
behavior of a single member by the LSK approach.

More specifically, for the case of a member with constant cross-sectional properties,
the transverse displacements (in a coordinate frame that remains aligned with the member
endpoints) can be expressed as

X

W(X) = w, sin ( )+ W(Y). (h

[l

where L, denotes the length of the member before deformation, and H(Y) must satisty

the orthogonality condition,
Lo X\ .
J sin < Wx)dy = 0. (2)
(1] 1‘(m)

Note that upper cuse symbols U or W denote displacements that vary along the length of
the member as a function of X, whercas lower cuse symbols wy,, or ¢, denote scalar
deformation parameters. Following the LSK approach, the member strain encrgy for
speciticd member clongation ¢, and out-of-straight deformation w,, is minimized by an
appropriate choice of U(.Y) and W(X), where U(.X) denotes the axial displacements within
the member and W(X) must satisfy the orthogonality condition (eqn (2)). This leads to
a unique and adequately smooth strain energy function, ¢, (Cp. W, o). where 1,
represents the imperfection of the member. At this point, the pertect structure is con-
sidered so that W(,,,, = 0. Using a formulation for slender columns (in the sense that shear
deformations are negligible) but arbitrarily large displacements (Appendix B), yiclds
the following results for this member strain energy ¢, and its derivatives evaluated at
W = Wiy =0

1 (EA , £A LA
(b{m]("‘ Ov 0) =4 ( ;/ es, (btml.r("~ 0‘ 0) = ( ’i > [ (b(m).rr((’w 0- 0) = (’“) s (3)
2 L (rer} L (rm} — Jim)

D n€,0,0) =0, Prpy,(e.0,0) = 0. (4)
At the bifurcation point for the member under axial compression, €, = — €. Where

) N . . ) - s .
Ceom = T (S4m) *Lim is the member shortening at buckling, and s, = ({id)mi/Lem 1s the
slenderness ratio, the following expressions are obtained :

n? {EA . . <
Bimowe = 00 Gimeww = 5 (F) (140, Dlmwun = 0. (3)
2 (1)
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3n* (EA

Plmtwwen = 3~ (—L—,> (1+ feem) (1 +O(eD)), (6)
(m)

where e = 7°(S.m)° is the magnitude of the axial strain at criticality.

Equations (3)-(6) contain all the information that is needed in the subsequent analysis
of the overall system. They are based on an exact formulation for a compressible column
(Appendix B). However, the factor 1 +O(gl) will be dropped in the subsequent analysis
since ¢ is very small compared to unity in most applications. Using the corresponding
exact expressions given in Appendix B would introduce no additional difficulty into the
analysis. However, approximations introduced by neglecting shear deformations of the
buckled members would remain, and are probably of no less importance than the O(g?)
terms in eqns (5b) and (6).

3. ANALYSIS OF OVERALLL SYSTEM (PERFECT CASE)

Let ¢ denote the collection of all joint displacement vectors for the structure, and
w={(...,W,,....) be the collection of all member out-of-straight deformations. All these
quantities can be collected into a vector u = (v, w), which fully defines the configuration of
the structure. [f the loads are applied at the joints only, and their magnitude and direction
is a function of 4 only, the total potential energy can be written as

¢(u, i i) = ¢(v, w, i) = Z (b(m)(c(m)v Wi W(m)) - P(l)l‘. )

where P(4) is a lincar operator such that P(4)r is the work done by the applied loads
through joint displacements v, @ describes the imperfections for the entire structure, and
the summation is carricd out over all members m in the structure, In evaluating the
derivatives (or varniations) of this potential energy, the following functional dependencies
must be considered :

(’(m) = ‘-‘(m)(vhn))* v(m) = l'(,,,)(l"), w(m) = W(,,,)(W), ,’V(m) = (m)(‘;)v (8)

where v, is the differencet in the joint displacement vectors at cach end of member m.
The Gateaux derivatives (see Appendix C for definition) of these quantities are

1
7."{,") * 5U(m)v (9a,b, lO)

UiumaOU = Olnyy Wi OW = SWi), €m0V =

. l .
4’(mp..-.-6:l’() 1 v= 7 (sll‘(m) : d 1 U(m) - ii (x(m) : ‘)ll"(m))(x(m) * () ll'(m))' (l l)

where duo, J,r, ete. and dw, §,w, etc. denote variations in the displacements ¢ and w
respectively ; dr,, is the difference of the variations in joint displacement at each end of
member m | dw,., is the variation in the out-of-straight deformation of member m; x,, is
the difference in joint coordinates at each end of member m in the deformed configuration ;
and [ = (X, " Xum)""? is the deformed length of member m.

With the aid of eqns (7)~(9). the Gateaux derivatives of the potential energy can be
evaluated:

$ .00 = Nipem.0v—P(A)0, DW= D) e OWipm).« (12, 13)

¢.n'6 205 = Z ¢(m).« (e(m).v(s Zv)(e(m).v5 ! U) + z N(m)e(m).vvé Zvé [N ( 14)

¥ Such differences in displacements at each end of the member should be taken by defining a beginning and
end for each membxr, and always subtracting the displacement at the beginning from that at the end.
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O W OnWor = ;(15(,,,,4“éu",,,,(e(,,,,".&‘), @ w0 W = Zd)(m,_wd:wm,dlw‘m,_ (13, 16)
m
Grun 0w Wor = gd)',,,,_,”().lw(,,,,d 1 Wom (€ ) OT), (17
D w03 WO WO W = ;¢(m.4w..»0‘ﬂt'(,,.,d:ww,é1 Wi (18)
D e O3 WO W wd W = ;d’m,_....w(xqu)51"'(".;5:“}"”(51 W (19)
where N, = ¢, Is the axial force tn member m.

For the perfect structure with no out-of-straight deformations of the members, sub-
stituting eqns (3) and (4) into egns (13) and (15) yields

¢ (6.0,4,000w =0, ¢, (.0, 2 0)dwde = 0. (20a.b)

In view of eqn (20a) the equilibrium conditions, ¢, du = 0 (¢ dv + ¢ ..ow = 0). are satisfied
if w = 0and ¢ v = 0. Therefore the principal solution must be of the form

0

o . 0 . 0 . . . )
u=u(r) = (v(4),0), Ciomy = ’-'mn(/-)v "V(nn = N,,(4) (2hH
. . (1) Gr (1)
and the equations for the buckling modes w = (r, w) reduce to
t) o - () o -
d. 080 =0V, ¢ .o =0V (22)

I the operator ¢, becomes singular, global buckling modes would develop. This case
is not considered here. Instead it is assumed that ¢, remains positive definite, while a set
of members nre M reach their buckling load at 4 = 4. In this casc the following relations
apply for all members nre M :

v . 0 .
c(nl)("u) = _(’c(mjv N(m)(/'c) = ‘-Nc(m)' (l)(m),mr = Ov (33)

where NV, = 1°(s*EA),,, is the buckling load for member m. From the last condition, and
eqn (10) it is seen that a typical buckling mode involves out-of-straight deformations off
some member ie M only, and can be written as

(1) () {1) (1) (13} 3
w=(0,w), w=(..,Wu,...), W, =0Vm#IL (24)

For convenience, the mode identifier i 1s taken to be the number of the member that buckles
for mode /. The mode normalization condition, eqn (A2), reduces to

.
(N H“N',, (1)

d ‘ - . .
[d}. d)_,m.(l)'(}.),o. A, O)l-ka W= -éL(")r(w(,,)‘oU = —$hy9,,. 23

where a dot placed above any quantity indicates that this quantity should be evaluated on
the principal branch (as a function of 4 only), then differentiated with respect to 4 and
evaluated at 4 = 4;; 8, is the Kronecker deltat; and ¢, is an arbitrary positive constant.
Choosing ¢, determines the values of ("1)-,,,. In order to facilitate the interpretation of the
algebraic results, this normalization is defined via the properties of a reference member,
which may. but need not, correspond to any of the members in the structure. Thus

+ There are no implied summations for repeated indices throughout this paper.
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TZ:A\-C L (N P
0= .__""_’_.ﬂ’_’ Wi = \/L(i)L(O)Nc(O)/(—AcN(I))v (26)

R

where any member properties identified by a subscript zero in parentheses correspond to
properties of the reference member. For linear prebuckling behavior, —4.N,,, = N,,. and
therefore lv't]'(,, = L,,. for any member i whose properties coincide with those of the reference
member. v

It follows from eqns (24). (18) and (5a) that ¢f‘,,u,,(&) %% vanishes for all i, J» k. This
indicates a symmetric bifurcation. Higher order postbuckling coefficients ¢,,; defined
in eqn (A6) (Appendix A) are therefore required to determine the directions and curvatures
of the bifurcated equilibrium branches. The postbuckling coefficients in turn de-

Gy (i) (i

pend on second order displacements, W= (r,w). To determine these quantities, the
procedure outlined in Appendix A is followed : first the space of admissible displacements,
A. is decomposed as the linear span of spaces A, and A, where A, is the space spanned by
the eigenvectors and A is a complementary space, such that the zero vector is the only
element that ts common to both A, and A. The obvious choice for this complementary
space is

q1= fu=(e.w)iw,, =0VmeM}. (27)

With the aid of egns (20) and (24). the general equation for the second order displacements,
eqn (AS), reduces to

(Pt e 5, C YO0 A (Pl W+ B, W )OW = OV (S0, w) € A, (28)

(1) Gy iy - . . P .
where 0 = (0',Wyre A are the desired second order displacements. The variation with
respect to w together with eqns (16) and (18), and the observation that ¢, ... > 0 formé¢ M

(Y73 IR . . .
leads to w = 0. The variation with respect to v, and application of eqns (5). (17) and (26)

. un e, G . .
leads to the conclusion that v =0 for i # J, and v are determined from

(Moo 5 £ )00 = 0, (29)
where
¢ [N} ¢0 -
Ny = ‘b(:).mw(“'m) = (Te:'s . (30)

Thus the second order displacements v represent the joint displacements due to an initial
tension Ny, in the member i, as calculated by linearization about the critical point. (The
initial tension is treated as if it were caused by an infinitesimal thermal contraction.) By the
assumption that local buckling modes develop before the global modes, positive definiteness
of ¢, is assured. Indeed, this operator represents the tangent stiffness matrix of the structure
with out-of-straight member deformations restrained. All second order displacements can
be obtained with only onc fuctorization of this tangent stiffness matrix.

For the calculation of the fourth order postbuckling coefficients, ®iin £qn (A6) reduces
to

Y] s D NKRD U (D k)
Ot = [P W W W WP (W O 4+ L +W D ). 30

Evaluating eqn (31) with the aid of eqns (5), (6), (17) and (19) yields

d’qu = ay 5.,' O+ 011‘5.1:51,' +a; (5:/(5,1:' (32)
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where

— (1 RN AR AR _ ! P U VR S
a, = 1D (Wiy) Ot/+¢(l)4#“u(u'(.‘)) €y by = (ﬁ' v ) i A\“,—r :*\Umf«;mo./ i
iV
(33a.b)
and

) L. EA m
A/,\/(l) =N l)u)‘)u+ L’ €y U
i

represents the change in axial force in member 7 associated with the second order dis-
placements for the buckling of member j. Symmetry of the coefficients a,, can be verified by
substituting o = " into eqn (29). However. in general neither the matrix {¢,] nor the
matrix [—aq, ] is positive definite.

Having calculated the required postbuckling coefficients. attention is now focused on
the bifurcated equilibrium branches for the perfect structure. By application of eqns (A3)
and (A4). these can be written as

ME) =4+ 148

[t

0O =T EEN+ R Y P 0@, wpy(d) =+ 0(E). (a0
o M

where & s the path parameter, and 4, and x, must be solutions to

1‘<~,{_‘+ Y u,,(x,)“) =0VieV, ) (%) =1 (354,b)

Y Ky

Solutions to these equations can readily be obtained as follows: (1) Partition the set of
modes M into two mutually exclusive and collectively exhaustive sets W, and M and take
1, = 0Vie M,; (2) solve the system of lincar equations

Y oa,y,=1VieM,. (36)

My

for y,. je M ; and (3) obtain the solutions tor this partition as

e sf(s0) n-(5s) o7)
(IR YN [GRV

The solution is real only when all y, are of the saume sign.
Regarding the stability of the bifurcated equilibrium branches, applying cqn (A7) leads
to the incremental stability matrix

B, = (—4i:+ Z e ()0, Y (i ) e (Mo x M) O (Myx M) o (M, x M,)
ke A,
= 2a,2,2,Y (i, je M x M,. (38a.b)
This matrix must be positive definite to ensure stability of the bifurcated branches. Alter-
natively positive semidefiniteness is a necessary condition for stability. This in turn requires
—ia+ Y a,(x) 2 0VieM,. (39)
i

Violation of this last condition for some i€ M, involves loss of stability for the member i
while it remains straight. This means that the member must be carrying an axial load in
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excess of its buckling load. Therefore eqn (39) will be referred to as the local. or member
stability condition. Solutions which violate this condition will be said to be locally unstable.
Locally stable solutions are not necessarily stable (since B, still can have negative eigenvalues
corresponding to eigenvectors y, with x, = 0¥ie M,). Indeed all bifurcated branches on
which the load drops away from the bifurcation point (4, < 0) are unstable.

Of particular interest is the postbuckling branch for which 4; is a2 minimum, since this
also provides the worst imperfection shape (see Appendix B). One way of determining this
branch is to find all postbuckling branches with the aid of eqns (36) and (37). and pick the
real solution for which 4, is a minimum. This method quickly becomes impractical, since the
number of such solutions increases exponentially with the number of potentially interacting
modes. The preferable alternative is to solve the minimization problem given in eqn (A10).
After substituting for the coefficients ¢4, from eqn (32). this reduces to:

minimize
2= Y T ayxx, (40a)
ieM M
subject to
Y=Ll x,20VieM (40b,c)

€M

where x, = («,)°. Despite the simple appearance of the minimization problem, it may have
many local minima, since the matrix of coeflicients a,, is not positive (or negative) definite.
Indeed any solution of eqns (36) and (37) is a potential local minimum. Fortunately,
however, the numerical examples of Section 5 suggest that the actual number of local
minima is much smaller,

It can be shown, using the Kuhn-Tucker conditions for optimality of the solution to
eqns (40) (see Appendix D), that the postbuckling branch on which the load drops most
rapidly is locally stable in the sense of eqn (39). More generally, local minima for eqns (40)
correspond to locally stable bifurcated equilibrium branches, and vice versa.

4. IMPERFECT STRUCTURE AND WORST IMPERFECTION SHAPE

The imperfections considered can be written as @ = &, where ¢ is the scalar magnitude
of the imperfection and « is the shape of the imperfection, which will be normalized in
some fashion. The following types of imperfections are considered: (1) errors in the joint
coordinates in the reference configuration ; (2) member misfit (a2 member is too long or too
short) ; (3) curved initial geometry of the members ; and (4) eccentricities at the joints, For
the present case, when local buckling modes develop before the global modes, it is found
that the leading order effects are due to the imperfections (3) and (4) only. These
cffects lead to a drop in load carrying capacity of the structure which is of the order ¢*?
The other imperfections [(1) and (2)]. on the other hand, have effects which are of the order
¢ or higher, and will therefore not be included. The analysis provides results which are
asymptotically exact for small imperfections.

In view of these considerations, the imperfection i can be characterized as

a=W=(.. L) =eW=g..

(In)v (m)v .. -)9 (41)
where W, = W, (X) define a transverse geometric imperfection for member m, with
W, = 0V X representing a straight member with zero eccentricities at the ends (see Appen-
dix B for details). The projections of the imperfection shape [eqn (A9b)] which determine
the postbuckling behavior of the structure, are given by

7 | = W Ner .
‘ = Blrww Wiy Wiy = W, (42a—¢)

i P Wi
/-c¢0 :¢0 \/—;-CN(:)NC(O)L(I')L(U)
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where

= 2 Ff"” . ?E;Y =, . - -
=g | o sin - W (X0 dy (43)

(t)

is the amplitude of an equivalent sinusoidal imperfection.
The worst shape of imperfection corresponds to &, = x,, and hence to

s - ‘,' I
= VA= ANGINGo Ly Loy,
Wy = N .
Newy

(44)

It can readily be verified that the imperfection norm

hal = 1 { 3 ) 2 B dr
I = = - U e g £ - i’
‘:'T ( -}'cAr(mi)/Vcl())L(m) L(O) L(m) o ( (M)( )) ‘ (45)

satisfies the conditions outlined in the last paragraph of Appendix A, and leads to a worst
imperfection shape that involves sinusoidal imperfections of amplitude w,,, given by eqn
(44) for the members i€ M, and no imperfection for the other members.

In summary, the procedure for finding the worst imperfection shape, and the cor-
responding load drop is as follows: (1) obtain the solution for the principal branch using
egn (12) and locate the bifurcation point 4, at which members me M reach their buckling
load. (2) Calculate the second order joint displucements from eqns (29) and (30). (3) Obtain
the coetlicients ¢, from eqn (33). (4) Solve the quadratic programming problem, egn (40).
{5) Calculate 2, = + \/x,. Finally, (6) the worst imperfection shape is given by cgn (44),
and the corresponding load drop tor any given amplitude of imperfection by eqn (A10).

5. EXAMPLES

5.1 Description of structures considered

Typical examples considered are shown in Fig. 1 for planar trusses and Fig. 2 for space
trusses. Therein members in compression are shown as continuous lines, whereas those in
tension are dashed. The member fexural rigidities, E7, are chosen such that all members
in compresston reach their buckling load simultancously. Consequently the number of
potentially interacting modes in every truss equals the number of its members under
compression in the principal solution.

The dimensions of the structures analysed are as follows: All members for the two-
dimensional trusses of Fig. | have length L, except the diagonal members for the rectangular
truss in Fig.- b, which are of length \/P.L. For the three-dimensional trusses of Fig. 2, the
chord members (i.e. those parallel to the z-uxis) are of length L, and the cross-section is
such that the chords fall on a circle of radius L. Thus the length of the ties (i.c. the members
paraliel to the x-y plane) are \/BL for the triangular cross-section of Fig. 2a, and \/BL for
the ties paralle! to the x or y axes in Fig. 2b.

The trusses are constructed from identical unit cells. However, the number of unit cells
and their arrangement varies: for example, the hexagonal truss of Fig. l1a has a radius of
2L. Hexagonal trusses of radii L and 3L (as shown in Table 1) are also analysed. The joint
numbering system for these follows the same pattern established in Fig. la. Tables | and 2
also illustrate the various arrangements of unit cells considered for the rectangular truss of
Fig. 1b, as well as the “antennae” of Fig. 2.

The displacement boundary conditions for the two-dimensional structures are illus-
trated in Fig. 1. For the three-dimensional structures with n bays, all joints in the plane
through points A4,,. 8, and C, are restrained in the =-direction. Sufficient restraint in the x-
and y-directions is also provided to prevent rigid body motions. Since these xand y restraints
do not produce any reactions, their exact configuration does not influence the results
reported here. The applied loads and reactions are shown in Figs [ and 2. They do not
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22 V31 27

(a)

2A

V3 A

2\

Fig. 1. Two-dimensional example trusses.

change direction. However the magnitude of the reactions shown in Figs | and 2 applies
only for the principal solution.

All members have the same axial rigidity, EA. However, to simplify the prebuckling
solutions, member sitcs that are shared by two unit cells (e.g. member sites on lines A -
Ayis Ayo=A 2, Asg—Aq2 and A=A, in Fig. 1b, and member sites on planes through points
A,, B, and C, in Fig. 2) are occupied by two identical members. This results in identical
stress states in each unit cell for the principal solution, regardless of the overall size of the
structure. Although the hexagonal trusses can also be constructed from unit cells, here only
one member occupies each member site; identical prebuckling forces, N, = —4, in all
members are achieved by appropriate choice of the external loads.

For the purpose of mode normalization, the length of the reference member is taken
tobe Ligy =L, \/-Z_L. L, \/EL for the structures of Figs la,b and 2a,b respectively, and the
refercnce member buckling load is taken as N, = A, = EAg,, where ¢, the buckling strain
of the reference member, controls the slenderness of the members. For the hexagonal truss,
¢ also represents the buckling strain in all the members. For other structures, the member
buckling strains differ, but are still approximately proportional to ¢..

Following the discussion in Section 4 (see also Appendix A), the worst imperfection
shape for a given truss is determined by the bifurcated equilibrium branch of the perfect
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tig. 2. Three-dimensional example trusses.

structure for which 4. 1s a minimum. This will be referred to as the critical bifurcated
branch. It follows from dimensional analysis considerations alone, that the dimensionless
curvature of the critical bifurcated branch, 4,/4,, depends only on g, (and noton EA or L).

5.2. Computational strategies used

Since the structures considered exhibit essentially linear prebuckling behavior (as long
as g, < 0.1), a standard Newton Iteration procedure provides rapidly converging solutions
on the principal branch of the perfect structure. Such solutions can also readity be extended
to the point where global buckling modes develop (i.e. ¢, becomes singular). The value of
the reference strain 2/EA at the point where the first global buckling mode develops is
shown in Tables | and 2 as &,. As expected, &, is seen to depend on the slenderness of the
structure as a whole. (Recall that, in contrast, e determines the slenderness of individual
members.) Only trusses for which ¢ < &, are considered, so that local buckling occurs
before the global bifurcation load is rcached, and ¢, remains positive definite.

To find the bifurcated equilibrium branch of the perfect structure with the minimum
curvature 4,(4, < 0), two different strategies are used: a direct approach and an opti-
mization approach. Although it cannot be asserted with 100% certainty that these methods
provide the global minimum, there is every indication that for the examples considered, the
solutions obtained are indeed globally minimal.
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Table 1. Results for two-dimensional examples

€o= 0001 A/ Ac= -329 |mode AoB1, B3B4 (- sym modes in x, y)
€cg=~0249 €c= 001 A/ A= -331 Imode AoBt, B3Ba ¢+ sym modes in x, y)
€= 01 A,/ d = -345 [mode AoB1, B3B4 (- sym modes inx, y)
% €c= 05 A,/ = -a30 [mode AoBi, BB (- sym modes inx, y)
€= 1 A,/ A = -597 |mode AoBs, B2B3 (- sym. modes inx, y)
Ec= 2 A,/ o= -2786|mode AoB2 (- sym mades In x. )
€= 0001 |M/ Ac= -288 |mode BiCz, B2C2/B1C4, B3Ca (» sym)
Ecg-0.149 €c= 00! A/ A= -289 |mode BiCz, B2C2/BaCa, B3Ca (- sym)
£c= 01 A,/ = -305 |mode B1Cz2, B2C2/B2C4, BaCa t+ sym)
@ €c= 05 Ay/A.= -396 fmode B1C2, B2C2/B2Cs, B3Cat- sym)
Ce= 1 A,/ A= -898 [mode B1Bs, C1C2 (+ sym modes in x, y)
Ec= 2 Ay A = mode gloval
£cq=0.124 €c= 0001 |A/A = -288 [mode CiD2, C2D1 (- sym modes i x, y)
€= 001 A/ A= -289 {mode CiDz2, C202 (+ sym modes tn x, y)
Ec= 01 A,/ A= -305 {mode CiD2, C2D2 (+ sym modes in x, y)
Ec= 05 A/ A= -395 [mode CiDz, C2D2 (+ sym modes in x, y)
€c= ! A/ A= -16.26|mode DiDz t+ sym. modes n x, y)
o= 2 Ayl A= mode gloval
€c= 0001  |A2 Ac=-22782mode S members (optimization)
€cg=000241 | Ec= 00! Ayl Ac=-3627%mode 6 members (optimization)
mm €c= 01 Ay A= mode glooal
- €c=- 05 Ayl A= mode glodal
1 x 16 bays |-Eez ! Ayl A= mode _gloval
€~ 2 Ayl A = mode global
Ec~ 0001 A,/ A.=-5220 [mode A70A80, A71A%0 (~ sym modes In x
Ecg-00212 E€c~ 001 A,/ h.=-5426 |mode A70A80, A71AB0 (+ sym modes in x
€c- 01 A,/ h.=-93 1S Imode A70A%0, AT1ARD (+ sym modes In x
£c~ 03 Ayl A= mode glonal
2 x 8 bays &= Mgl Ac= mode_gloval
£ 2 Ayl A = mode gloval
€cg=0150 Ec~ 0001 Ay Ac=-1011 Imode 7 members (optimization
€c- 001 A,/ A.=-1018 [mode 7 memoers (optimtzation)
€c= 01 A/ A =-1092 [mode 7 members (optimizatton)
Ec- 0% A/ Ac=-1571 [mode & members (optimization)
Ec= 1 A/ A.=-3218 [mode 6 members (optimization)
=2 A/ A = mode qlonal

The direct approach is based on finding solutions to eqn (36) for various choices of
the set M. Since the number of possible sets M, grows exponentially with the number of
potentially interacting modes, it quickly becomes impractical to consider all possible scts
M. Furthermore, it was observed that the critical postbuckling branch typically involves
buckling of only a few members. Therefore, only sets A, that involve buckling of up to
five members are considered. Even then, the number of possible sets M, (a sum of binomial
coctlicients) can become staggeringly high. For expediency, the number of possible sets M,
is therefore further limited to 500,000 starting with those that involve buckling of the fewest
members.

As an alternative to the above dircct approach, the quadratic programming algorithm
by Schittkowski (1986) is used to solve the problem defined by eqns (40). This proved very
efficient even for rather large numbers of interacting modes (up to 100). For all the examples
considered, several initial gucsses lead to the same final optimal solution. Moreover, for
problems with a relatively low number of interacting modes (up to about 40) where the
dircctapproach is feasible, the results from the optimization method arc always in agreement
with those from the direct approach. In other cases (identificd in Tables | and 2 by the
word optimization in parentheses). none of the 500,000 solutions calculated by the direct
procedure were real and locally stable, and it was necessary to rely on the results from the
optimization approach alone.
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Table 2. Results for three-dimensional examples

€cg= 0204 €= 000001 |Aaf Ac= -419 Imode AoA1,BoALCoAL(~ sym moges)
( €c= 00001 M/ A= -419 Imode AaA1,BoAL CoAl(+ sym modes)
/'ﬂ €c= 0001 A/ A= -420 [mode AoA1,BoA1CoAL(> sym modes)
/ €c= 001 Ay A= -423 [mode AoA1,BoA1CoAL (+ sym modes)
i?’ Ec= 0! A/ A= -459 |mode AoA1,BoA1CoAL(: sym modes)
e 1 Ayl A= -73 75| mode AoC1,BoA1,CoB1/ A0BLBOCI.CoA
€c= 000001 /A= -3051|mode 3 members (optimization)
Ecg = 00474 €c= 0000t A/ A= -3052fmode S membvers (ontimizatton)
5 bays / €c= 0001 A,/ A= -3057]mode 5 members (optimization)
44| £c= 001 Ayl A= -31.10{mode S members (optimization)
LM\ Ec= 01 A/ A= -37.71 Imode A4AS,BaAS CaAs (- sym modes)
N €c= 1 A/ A= - se6dmode gloval
At €c= 000001 |Ay/ Ac= -63.41|modeAsA10,B9A10,C9A10(+sym moges)
€= 00001  |A/ Ae= -63 a5/mode AsA10,B9A10,CAIN *sym moes)
€c= 0001 |A/ A= -6385|modeAsA10,BoA10,CoAI0(+sym modes)
Ecg= 00126 €c= 001 Ayl A= -68 19| modeAsA10,BoA10,CIA10(»sym modes)
10 bays €= 01 Ayl A= -292.2{modeA7As, ABA9, A9A10(+sym maides)
-1 Ay A= mode gloval
€cg - 0102 €c= 000001 |Az/ Ac=-52.23 [mode AoD1,CoD1,DoD1

€c= 00001 A/ Ac=-52.24 [mode AoD1,CoD1,DaD1t

€c= 0001 Ayl X =-5229 [mode AoD1,CeD1,DoDt
€c= 001 A/ h.=-5279 [mode AoD1,CoD1,DoDt

€c~ 01 A,/ A =-5851 Imode AoD1,CoD1,DoDt
Ec~ 1 /A.=-8,914 Imode AoD1,CoDt
€cg - 00237 €= 000001 Ay Ac=-219 7] mode A3D4,C3D4,D0304

€e~ 00001 |Ay/ Ae=-21981mode A3D4,C3D4,03D4
€c- 0001 |Aqf Ac=-22062 mode AiD4,C30D4,D304
€c- 001 A/ A =-229 06 mode A3D4,C3D4,D304
g Ec= 0! A/ A =-37463mode A3D4,C3D4,03D4

Ec= t Ayl A= made glopal
€c* 00000! /A =-443 10{mode A7108,C708,D7Ds

€c= 00001 A/ Ac=-44355mode A708,C1Ds,070s
€c~ 0001 |/ Ac=-448 16/mode A1Ds,C708,070s

4 bays

€c= 001 Ayl A =-500 Sdmode A7Ds,C108,07D8
€cg=000818 | £.u oy Ayl A= mode global
8 bays £e= | l’ﬂ;’ mode gional

5.3. Discussion of results

The results for all 12 trusses considered are shown in Tables | and 2 for various values
of the parameter &.. For small values of ¢, (slender members), the curvature of the critical
bifurcated branch, —i,/4_, is seen to approach an asymptotic valuc (independent of &.).
This corresponds to the case investigated by Britvec (1973) and Britvec and Davister (1985)
in which compressibility of the members is neglected. Indeed, for a selection of the examples
considered by Britvec (1973), the current analysis gives results that are in agreement with
his. Even for essentially incompressible members, the slenderness of the structure as a whole
has a strong cffect on the postbuckling behavior and imperfection sensitivity, with 4,/
being larger when the structure as a whole is more slender.

For larger & (stubbier members), 4,/4, increases in magnitude, and it becomes very
large as the local buckling load approaches the global (i.¢. as £, — &.). This is not surprising,
since ¢,, becomes singular in this case, resulting [via eqn (29)] in large second order
displacements, which in turn [via eqn (33)] produce postbuckling coeflicients a,, of large
magnitude.

The dependence of 4,/4, on e is further illustrated in Fig. 3fora [ x4 bay rectangular
truss made of four identical square unit cells each of side L, and a | x | bar truss of
dimensions Ly % 4L,,,. Global bifurcation for these structures occurs at &, = 0.0375 for
the x4 bay truss, and at g, = 0.0309 for the somewhat more flexible 1 x 1 bay truss of
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Fig. 3. Results for rectangular trusses of overall dimensions L, x 4L,

the same overall dimensions. Clearly 4,/4, is seen to approach infinity as the local buckling
load approaches the global one. This implics that the imperfection sensitivity becomes
infinite under such conditions. It must be borne in mind, however, that this result applics
only for infinitesimally small imperfections. Actual imperfections are finite, and so is the
drop in load carrying capacity thcy produce. Hence the limits of applicability of the
asymptotic results must become vanishingly small as the local modes approach the global.
Under such circumstances, the interaction between local and global modes should be
explicttly included in the analysis, before any meaningful conclusions in regard to imper-
fection sensitivity can be drawn.

Similar results arc obscrved in Fig. 4 for a 2 bay space truss of the type shown in Fig.
2u with an equilateral triangular section of sidelength L, and an overall length 10L,,,, and
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a 1 bay space truss of the same overall dimensions. Global buckling for these structures
occursate,, = 0.0165and ¢, = 0.0148. Again, for the same overall dimensions, the structure
with a larger number of bays has the higher global buckling load. For essentially incom-
pressible member behavior on the other hand 4,/ seems not to depend on the number of
bays that a given structure of fixed overall dimensions is divided into.

The members that buckle on the critical bifurcated branch of the structure are listed
in the last column of Tables | and 2 as the “mode™. In most cases a given mode is seen to
persist for a range of values of ¢,. However, changes in the mode do occur: there seems to
be a tendency towards buckling of a smaller number of members as ¢, increases towards
€. but changes in mode that are not accompanied by changes in the number of members
that buckle also occur, for example for the hexagonal truss of radius L.

6. CONCLUSIONS

A methodology has been established based on the Lyapunov-Schmidt-Koiter
decomposition and asymptotic expansion, by which the worst imperfection shape and the
corresponding load drop for any truss-type structure with multiple eigenmodes that involve
buckling of individual members can be determined. This problem reduces to a quadratic
programming problem, in which the number of unknowns is equal to the number of
interacting modes. Although the computational ¢ffort for finding the global minimum with
100% certainty grows cxponentially with the number of modes, it appears from the examples
considered that in most cases the global minimum can be found much more efficiently. The
results are asymptotically exact for small magnitudes of the imperfection.

The method is cffective for essentially incompressible member behavior [the case
considered by Britvee (1973) and Britvec and Davister (1985)], as well as for compressible
members. The imperfection sensitivity increasces with increasing member compressibility
(stubbicr members), and becomes infinite as the local member buckling load approaches
the bifurcation point for global buckling. Under such conditions, the range of validity of
the current analysis is expected to become vanishingly small ; an analysis in which interaction
of local and global modes is explicitly considered should be used.
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APPENDIX A: GENERAL RESULTS FOR A MULTIPLE SYMMETRIC BIFURCATION

This appendix summarizes general results from the Lyapunov-Schmidt-Koiter asymptotic postbuckling
theory that are used in this paper. These results apply when: (1) The structure is elastic with a sufficiently smooth
potential energy function ¢ = ¢(u, A.4). where ue 4 is the displacement field, i is the load parameter, and ae p|
represents an imperfection. (2) The sets of admissible displacement and imperfection fields, 4 and A4 respectively,

are vector spaces. (3) A smooth principal solution #(4) exists which vanishes at 4 = 0 and satisfies the equilibrium
condition, ¢,,(3(;.). +.0)0u = 0.forall jue 4. and A€ [0, 4} ), where i} > 4. (4) Equilibrium states on the principal

branch must be stable for A€ [0. 4.). in the sense that the bilinear operator. ¢_w(3(i). 4.0). is positive definite. (5)
At criticality (4 = A) this stability operator has a finite dimensional nullspace, 4,. (6) The basis vectors for this

nullspace are buckling modes denoted by . and satisfy
¢ U0u=0Voucd, ¢.4=0 (A1)

where the superscript ¢ on the potential energy ¢ and its Gateaux derivatives denotes evaluation at criticality. (7)
The buckling modes are orthonormalized so that

d 0 ;
[E  w(i(2), 2,0)" ’] = =y (A2)

where ¢, is any positive constant, and can be chosen to achieve a convenient normalization.
The bifurcation is siid to be symmetric if

. b () k)
Pt U =0

for all combinations of modes, i, j. k. In this case the solution for the bifurcated cquilibrium branches of the
perfect structure is of the form

AE) = A+ E+0EY). @) = uME) +EX 2+ 18 T 20, +0(E, (A3)
1 i

where Jis a path parameter which is approximately equal to the distance of the solution to the principal branch,

"#" are second order displacements to be defined in eqn (AS). and the parameters a, and 4, are solutions to
1, 1 )
- 54:“- + élgl‘buu‘!;“k“l =0, zl:(ﬂf)' = {, (A3)

where the postbuckling coeflicients ¢, are determined as follows: (1) Decompose the space of admissible

displacements A into the spuce A, which is spanncd by the buckling modes ¥, and a complementary space A,
defined so that A, and A span the space A, but the zero vector is the only element that is common to both A4, and

A. (2) Find second order displacements, ‘i € 4 such that
(Pt U+ 5,010 =0, voieA. (AS)
Finally, (3) the postbuckling coefficients can be calculated from
‘/)‘I“ - :‘biuuul“‘”‘/‘, ':(l (l’ll+¢fm(lll)(‘{li (u|+(:‘n“)+(3l;‘:b)}/¢u = { ,c,m‘l‘l)([l”tl”lll) _ ?n((t )u&n+(5u“n+w U‘:))}/¢o-
(A6a,b)

The bifurcated equilibrium branch defined by eqn (A3) is stable in the vicinity of the bifurcation point, if the
incremental stability matrix

B, = _)':‘su +Z¢A,ﬁldkal (AT)
k.t

is positive definite.

For most problems the potential cnergy ¢ can be written as a sum of two terms: the first depends on the
displacements u only, and represents the strain energy of the structure; the other term represents the potential
encrgy of the loads, and can be written as — A (u), where A(.) is a linear function. If the structure is loaded by a
single point load of magnitude 4 and constant direction, then A = A(x) represents the deflection under the load.
Budiansky (1974) refers to A as the generalized load shortening. Using his approach to cvaluate this quantity on
any of the bifurcated branches for the perfect structure yiclds :

A =Aw({)) = Ay + 182+ 0(EY), (A8)

where 4, is the generalized load shortening evaluated on the principal equilibrium branch at 4 = i(¢).
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~ Next consider an imperfection & = e, where ¢ is the scalar imperfection amplitude, and 7 is the shape of
imperfection, normalized so that

[ E

— TP - a.b)
Lebo u (A%a.b)

Y& =1 where Z=

For smull magnitudes of the imperfection ¢, the behavior in the vicinity of the bifurcation point depends only on
the projections J,. The largest load drop (defined as 4. — 4., where A, is the value of the load parameter at the first
limit point for the imperfect structure) for a given (small) amplitude of imperfection occurs for &, = x,, where 2,
is the solution to eqns (A4) for which 4, is smallest. Assuming that this 4, is negative, the corresponding normalized

load drop is
;w—iL 3 ";-I A\
— ) =35|—= +0(z). (A10)
fe 2 Ae

So far only the worst shape of the projections ¢, have been determined. In general there is an infinite set of
imperfection shapes 4. all of which have the same projections £,. In order to obtain_a unique solution for the
imperfection shape. it is necessary to define an imperfection norm. such that for any ¢ satisfying eqn (A9a): (1)
all 4 satisfving eqns (A9b) also satisfy the condition || = 1. and (2) there exists a unigue & which satisfies both
eqns (A9b) and the condition 4! = 1. This last & is the worst imperfection shape if & are worst values for the
projections of the imperfection shape.

APPENDIX B: POSTBUCKLING ANALYSIS OF A COMPRESSIBLE COLUMN

Surprisingly, an exact initial postbuckling analysis for an elastic compressible column appears not to be
available. The closest that could be found is the analysis by Britvee (1973), in which an unnecessitry assumption
regarding the distribution of slope along the column is made. The reason for this may be that a substantial amount
of algebra is involved. Furthermore, the results merely confirm that for slender columns compressibility effects
are not important in the postbuckling range. The assumption that the column is compressible in the prebuckling
range, but freczes axially once the critical load is reached (Kondoh and Atluri, 1985) is well justificd. Indeed. for
smaller values of the slenderness ratio, when compressibility effects might play some role, shear deformation will
also become important, and perhaps more so. Nevertheless, for the sake of completeness, a brief summary of
the formulation and final results from the postbuckling analysis of & compressible column with specified end
displacements (but no restraint against end rotations) by the LSK technique ts given here.

Planar deformation in the X Z planc is constdered, where the Y-axis always passes through the endpoints off
the member where the loads are applied. The initial and deformed geometry of the centroidal axis of the column
dare written as

R(Y) = Xey + H(V)e,, o(X) = (XU +e/L)+ U (X) ey + LX)+ W(X) e, (B1)

respectively, where ey, e, and e, are the unit vectors in the X, ¥ and Z directions. Member guantities defined in
the main body of the paper are not redefined here, and the subscripts in parentheses identifying the member to
which they pertain are omitted. Thus, for example, ¢ denotes the specificd member elongation. The set of admissible
displacements A includes all displacement functions (U, 1) that vanish at the endpoints, X = O, L. For the
moment, the imperfection W is also assumed to vanish at the endpoints. The measures of axial and bending
deformation, ¢ and ~, are taken to be

=R
TRy

(7' = (B::( e'i) ‘R

(r'xev)-ri
T A T

. (B2)

where a prime denotes differentiation with respect to X and J = J(Y) and 0 = 0(X) denote the rotation of the
longitudinal asis of the column before and after deformation respectively. (The rotation produced by the loads
is0 )

The potential energy of the column is given by

LEA , ED O,
SU W, e, W) =j ([‘.‘;!x'-ﬁ ;’vlh“>HR'J} 4.y, (B})

where EI = s°L*EA is the flexural rigidity of the column. The arguments of this potential energy functional are
enclosed in square brackets, to distinguish the functional $[...... .} from the reduced potential cr}crgy_funcnon
#(.....) defined later. for which the arguments are enclosed in parentheses instead of brackets. Stationarity of the
potential energy with respect to U and W leads to

1 v
~—-(EIx)'n—EAst = constant, t= W:l—lr . oA=tXe,, (B4)

fierl

which coincides with the cquation that would be obtained from equilibrium considerations, if the axial force and
bending moment at any point in the column arc taken to be Eds and Elx, rcspccnvcly._Thls tltustrates the
advantage of using the deformation measures. £ and «., defined in eqn (B2). Other deformation measures would
produce much the same final results as long as strains in the column are small. but they would also Icad to different
(and potentially more complicated) equilibrium and/or constitutive cquations.
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The principal solutionis U = W = 0. , . o
The first bifurcation occurs at ¢ = —e, = —¢.L, where the buckling strain, &, is given by

& = Y11= 1—-4n’s’). (B3)

This exact expression is within a factor of (1 +0(e,)) of the approximation ¢, = n’s* used in Sections 2 and 3. The
buckling mode is

Ux) =0, W(X) = sin (xX/L). (B6)

In following the LSK technique the set of admissible displacements A is decomposed as the linear span of the
eigenspace A, and a complementary space A as follows:

L
Ay = {(U.W):U=0.W(X) = wsin(zX/L)}, A= {(U. w) :j W(X)sin (nX/L)dX = o}. (B7a.b)
0

where w is the scalar out-of-straight deformation of the member. Using this decomposition, the reduced potential
energy can be detined as

- (Rl »
dle.w. W) = min o[U wiV+ W,e, W]. (B3)
(L.W)red

Although the authors are not awire of any closed form solution to this minimization problem. it is possible to
resort again to an asymptotic expansion to obtain the first few terms in a series representation of the reduced
potential energy. or equivalently. to obtain the derivatives of the reduced potential energy evaluated at the
bifurcation point. After a substantial amount of algebra (some of which was done with the aid of a computer and
the MACSYMA program) the results obtained for the derivatives of the reduced potential encrgy evaluated at
w = W = 0 arc those given in cqns (3) and (4). These results are exact. Additional derivatives of the reduced
potential energy arc given in eqns (5) and (6). Where these results contain a factor 1 +0(&]), the corresponding
exact results are:

rREA =2

oee = 20 (=it P =

nEA 6210, + 125 = nEde, [V =
VRN T T g = = 5 (X sin (r XL,
SLT (e P i ‘[' (X)sin (rnX/L)

(B% ¢)

The approximations in egns (5) and (6) arc within a factor of (1 +0(x))) of these exact values. Further approxi-
mattion in eqn (6) would be possible while maintaining accuracy to within a factor of (1 +0(g,)). However, in this
case, the results for the postbuckling behavior of the column would reduce to those for the moderate deformation
theory, which predicts that axial load remains constant with increasing displacements after buckling oceurs.

Finally, some discussion with regard to the assumption that the imperfection W vanishes at the endpoints is
in order: since the formulation is based on arbitrarily lurge imperfections, it remains valid for an imperfection
that contains rapid changes in W in the vicinity of the endpoints. Thus end eccentricities can also be represented,
and eqn (43) is still valid for calculating the equivalent sinusoidal imperfection. Note however that this analysis
applics for link clements (i.c. the clements with length equal to the eccentricities that provide the connection
between the column end points and the point of luad application) consisting of a short segment of the column.
If these links are to be replaced by rigid links, an alternative formulation is required, since this introduces a
nonlinear essential boundary condition, as a result of which the set of admissible displacements of the centroid
of the cross-section no longer form a vector field. Such an alternative formulation leads to the same result as eqns
(BY) and (43) to within a fuctor of (I +0(x,)).

APPENDIX C: DEFINITION AND NOTATION FOR GATEAUX DERIVATIVES

Let Fi(Ux V) — W be a mapping, where U, V and W are vector spaces. Assuming suitable smoothness.
the limit
. Flu+eduv)y—F(u,rv d
Fou= lim D 0FEO D Z Flur) [— Flu+e du, u)] (€
&) 4 dE ¢ =)

exists, and is lincar in du. Thus the Gateaux derivative £, is a lincar operator. For fixed du, another mapping
(F,8u): (Ux V) ~ W can then be considered and the above definition can be reapplied to define higher Gateaux
derivatives. For example,

(72
' Ou = o =] o—— F: !
F .00 du = (F du) dt [0” = Flut+eduv+n &)]‘-,-o'

a2
Fdudu=(F,5u) 0u= [;‘——F(u+c Su+n J:u,v)] . (C)
n de g0

Note that the nth Gateaux derivative is an n-lincar operator. All # arguments always follow the Gateaux derivative,
cxcept that any scalar arguments (corresponding to the case when U and/or V is the set of rcal numbers) are

t Norms are required on the spaces U, V, W to define the notions of smoothness and existence of the limit.
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omitted from the list. These may be included as scalar multipliers at any other location. since in this case the
Gateaux derivative reduces to the usual partial derivative. The order of the subscripts is always opposite to that
of the corresponding arguments of the n-linear operator.

Although no norms appear explicitly in this definition, addressing existence of the Gateaux derivative does
require norms. Frechet derivatives could also have been used throughout this paper. However their definition
does require the explicit use of norms, and is less suggestive of their meaning or method of evaluation. That is
the only reason why the Gateaux derivative is preferred here.

APPENDIX D: PROOF OF LOCAL STABILITY

Suppose the inequality constraint in eqn (40c) is replaced by x, 2 b,. and that these inequality constraints are
active for all ie M,,. If &, is increased for some i€ M, then the inequality constraint becomes more restrictive and
the minimizing 4, should increase. Thus a necessary condition for optimality is ¢4,/¢b, > 0. This derivative is
given by ¢4,/éb, = —yu,, where yu, (i€ M,) is a Lagrange multiplier. which is determined by requiring that the
Lagrangian,

L= Z Z u,,.\"_\*,+u( Z X, — l)+ S i (x, —b). (D)
vy

M €,

be stationary with respect to x, (i€ M), and the Lagrange multipliers g, (/€ M,). and . Stationarity with respect
1o x, (f€ M) rccovers eqn (35a). and leads to g = —24,. With this result, stationarity of the Lagrangian with
respect to x, (i€ M,) produces,

G,
2( z a,,xl—iz> = -y, = ‘;’A’l 20 VieM,. (D)

e,

Thus the local stability condition, cqn (39). holds for the postbuckling branch which minimizes 4,. as required.



